ZnO-polymer-based membranes for wastewater treatment and environment protection

Edina Rusen¹, Gabriela Isopencu¹, Gabriela Toader², Aurel Diacon^{1,2}, Adrian Dinescu³, <u>Alexandra Mocanu^{1,3*}</u>

¹University Politehnica of Bucharest, Faculty of Chemical Engineering and Biotechnologies, 1-7 Gh. Polizu Street, 011061, Bucharest, Romania

²Military Technical Academy "Ferdinand I", 39-49 George Cosbuc Av., 050141, Bucharest, Romania

³National Institute for Research and Development in Microtechnologies – IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Bucharest, Romania

*e-mail address: alexandra.mocanu@upb.ro

Since they can cause skin rashes, genetic abnormalities, disorientation, gastrointestinal problems, and respiratory allergies, organic pollutants and water contaminants continue to pose a serious threat to human health [1]. For instance, in textile industry, large amounts of organic dyes contaminate water[2]. This represent a tremendous hazard considering that some of the dye agents are rated as toxic compounds with carcinogenic effects and extremely low biodegradability[2].

Despite the fact that metal oxides like TiO₂ and ZnO are greatly used in the photocatalytic degradation for wastewater decontamination due to their high natural abundance, semiconducting properties, and reduced toxicity a lot of attention was given to design new materials/composites to improve their photocatalytic and antimicrobial activity to enhance contaminated water sanitation processes[3, 4].

The main purpose of these studies involves the design of synthetic and natural-based polymer membranes modified with inorganic nanoparticles like ZnO for removal of organic water contaminants through photocatalytic/antimicrobial processes.

Acknowledgements

The authors would like to acknowledge for financial support from Ministry of Research, Innovation and Digitalisation (UEFISCDI) through PN-III-P2-2.1-PED-2021– contract.no. 672PED/2022. AM acknowledges PubArt - Program for supporting publication of articles and scientific communications from University Politehnica of Bucharest.

References

1. Järup, L. Hazards of heavy metal contamination. British Medical Bulletin 68, 167 (2003).

2. Kaur, J., Bansal, S. & Singhal, S. Physica B: Condensed Matter 416, 33 (2013).

3. Rusen, E.; Mocanu, A.; Nistor, L.C.; Dinescu, A. et. al.. ACS Applied Materials & Interfaces 6, 17384-17393 (2014).

4. Mocanu, A.; Rusen, E.; Diacon, A.; Isopencu, G. *et.al. Materials Chemistry and Physics* **223**, 39-45, (2019).