Photocatalytic behaviour of visible-light activated g-C₃N₄/TiO₂ heterojunctions

M.L. Matias¹, A. S. Reis-Machado², J. Rodrigues³, T. Calmeiro¹, J. Deuermeier¹, A. Pimentel¹, E. Fortunato¹, R. Martins^{1*}, D. Nunes^{1*}

¹CENIMAT/i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal

²LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal

³*Physics Department & I3N, Aveiro University, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal*

**Corresponding Authors: Daniela Nunes and Rodrigo Martins, e-mails: daniela.gomes@fct.unl.pt (D. Nunes) and rm@uninova.pt (R. Martins).*

Abstract

This study reports the synthesis and characterization of g-C₃N₄/TiO₂ heterostructures considering a simple and fast microwave-assisted approach. Carbon nitrate (g-C₃N₄) was mixed with TiO₂ with different amounts (15, 30 and 45 wt. %) to understand the photocatalytic behaviour of such materials. Methyl orange (MO) was tested under solar simulating light. X-ray diffraction (XRD) revealed the anatase TiO₂ phase for all heterostructures produced. Scanning electron microscopy (SEM) showed that by increasing the amount of g-C₃N₄ in the synthesis, large TiO₂ aggregates composed of irregularly shaped particles were disintegrated and resulted in smaller ones, composing a film that covered the g-C₃N₄ nanosheets. Scanning transmission electron microscopy (STEM) analyses confirmed the existence of an effective interface between a g-C₃N₄ nanosheet and a TiO₂ nanocrystal. X-ray photoelectron spectroscopy (XPS) evidenced no chemical alterations to both g-C₃N₄ and TiO₂ at the heterostructure. The materials had their optical properties investigated using UV-VIS and it has been observed a visiblelight absorption shift (red-shift in the absorption onset). The 30 wt. % of g-C₃N₄/TiO₂ heterostructure showed the best photocatalytic performance, with a MO dye degradation of 85 % in 4 h, corresponding to an enhanced efficiency of almost 2 and 10 times greater than that of pure TiO₂ and g-C₃N₄ nanosheets, respectively. The superior photocatalytic activity was attributed to the synergy of g-C₃N₄ and TiO₂ materials. Two possible photocatalytic degradation mechanisms of the heterostructure were proposed. This study is expected to effectively contribute to environmental remediation, decomposing a great source of water pollutants, that is the azo dyes.

Keywords: g-C₃N₄/TiO₂; microwave synthesis; heterostructures; photocatalysis; pollutant degradation.

Acknowledgements

This work was financed by national funds from FCT-Fundação para a Ciência e a Tecnologia, I.P., within the scope of projects UI/BD/151292/2021 (Ph.D. research scholarship), LA/P/0037/2020, UIDP/50025/2020 and UIDB/50025/2020 of the Associate Laboratory Institute of Nanostructures, Nanomodelling, and Nanofabricationi3N, but also the 2021.03825.CEECIND. Acknowledgments are also given to the EC project SYNERGY H2020-WIDESPREAD-2020-5, CSA, proposal nº 952169, EMERGE-2020-INFRAIA-2020-1, proposal nº 101008701, and to the European Community's H2020 program under grant agreement No. 787410 (ERC-2018-AdG DIGISMART).